

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE:	SEMESTER:			
Mechanical Engineering	3rd Sem	NAME OF THE TEACHING FACULTY: Er.Snehasis Das		
SUBJECT:		Semester From Date:15/09/2022		
STRENGTH OF MATERIAI	No of Days/Per week class allotted: 4 Class P/W (60)	To Date:22/12/2022		
		No. Of Weeks: 15		
WEEK	CLASS DAY	THEORY TOPICS	REMARKS	
1 st	1 st	Types of load, stresses & strains,(Axial and tangential) Hooke's law, Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants,	Date	Dean/Principal
	2 nd	Principle of super position, stresses in composite section		
	3 rd	Strain energy and resilience, Stress due to gradually applied,suddenly applied and impact load		
	4 th	Simple problems on above.		
2 nd	1 st	Doubt clear class		
	2 nd	Definition of hoop and longitudinal stress, strain		
	3 rd	Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain		
	4 th	Assignment		
3 rd	1 st	Assignment question Discussion		
	2 nd	Computation of the change in length, diameter and volume		
	3 rd	Simple problems on above		
	4 th	Determination of normal stress, shear stress and resultant stress on oblique plane		

			-
	1 st	Location of principal plane and	
	-	computation of principal stress	
		Location of principal plane and	
	$2^{\rm nd}$	computation of principal stress and	
	-	Maximum shear stress using Mohr's	
		circle	
4^{th}	3 rd	Types of beam and load	
		Shear Force and Bending moment	
	4 th	diagram and its salient features	
		illustration in cantilever beam, simply	
		supported beam and over hanging	
		beam under point load and uniformly	
		distributed load	
	1 st	Class Test	
	2 nd		
ح th		Assumptions in the theory of bending,	
3		Bending equation, Moment of	
	3 rd	resistance, Section modulus& neutral	
		axis	
	4 th	Solve simple problems.	
	1 st	Revision of Last Class	
	2 nd	Assignment	
	ard		
$6^{ m th}$	314		
		Define column	
	4 th	Direct stresses, Bending stresses,	
		Maximum& Minimum stresses.	
		Numerical problems on above	
	1 st	Direct stresses, Bending stresses,	
		Maximum& Minimum stresses.	
d		Numerical problems on above	
7 th	2 nd	Doubt Clear Class	
	3 rd	Doubt clear Class	
	4 th	Assignment	
	1 st	Assignment question Discussion	
	1		
	2 nd		
		Buckling load computation using Euler's	
		formula (no derivation) in Columns with	
		various and conditions	
8^{m}		Explain centrifugal cacting such as true	
	3 rd	centrifugal casting centrifuging with	
		advantages limitation and area of	
		application	
	a	Doubt Clearing Class and Assignment	
	4 th	Ouestions Discussion.	
	1 st	Assumption of pure torsion	
1	L		

	2 nd	The torsion equation for solid and	
	ard	hollow circular shaft	
9 th	3	Revision Class	
	4^{th}		
		Comparison between solid and hollow	
		shaft subjected to pure torsion	
	1^{st}	Comparison between solid and hollow	
		shaft subjected to pure torsion	
	2 nd	Internal Question Discussion	
10^{th}	3 rd	Doubt clear class	
	4 th	Comparison between solid and hollow	
		shaft subjected to pure torsion	
1 1 th	1 st	Doubt Clear Class	
	2 nd	Revision	
11	3 rd	Class Test	
	4 th	Class Test	
12 th	1 st	Doubt Clear Class	
	2 nd	Revision Class	
	3 rd		
	_	Doubt clear class	
	4 th	Last Class Discussion	
13 th	1 st	Internal Question Discussion	
	2 nd	Doubt clear class	
	3 rd	Doubt clear class	
	4 th	Class Test	
14 th	1 st	Discussion about column	
	2 nd	Discussion Sample paper question	
	3 rd	question discussion for semester exam	
	4 th	question discussion for semester exam	

Chittaneujan Te

(Dan

DEAN

PRINCIPAL